Topological phase transition and quantum spin Hall edge states of antimony few layers

نویسندگان

  • Sung Hwan Kim
  • Kyung-Hwan Jin
  • Joonbum Park
  • Jun Sung Kim
  • Seung-Hoon Jhi
  • Han Woong Yeom
چکیده

While two-dimensional (2D) topological insulators (TI's) initiated the field of topological materials, only very few materials were discovered to date and the direct access to their quantum spin Hall edge states has been challenging due to material issues. Here, we introduce a new 2D TI material, Sb few layer films. Electronic structures of ultrathin Sb islands grown on Bi2Te2Se are investigated by scanning tunneling microscopy. The maps of local density of states clearly identify robust edge electronic states over the thickness of three bilayers in clear contrast to thinner islands. This indicates that topological edge states emerge through a 2D topological phase transition predicted between three and four bilayer films in recent theory. The non-trivial phase transition and edge states are confirmed for epitaxial films by extensive density-functional-theory calculations. This work provides an important material platform to exploit microscopic aspects of the quantum spin Hall phase and its quantum phase transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum spin Hall phases

We review our recent theoretical works on the the quantum spin Hall effect. First we compare edge states in various 2D systems, and see whether they are robust or fragile against perturbations. Through the comparisons we see the robust nature of edge states in 2D quantum spin Hall phases. We see how it is protected by the Z2 topological number, and reveal the nature of the Z2 topological number...

متن کامل

Phase transitions in two tunnel-coupled HgTe quantum wells: Bilayer graphene analogy and beyond

HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the "single-valley" analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers sep...

متن کامل

Quantum spin Hall effect and topological phase transition in HgTe quantum wells.

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an "inverted" type at a critical thickness d(c). We show that this transit...

متن کامل

The quantum spin Hall effect and topological insulators

form many different states of matter, such as crystalline solids, magnets, and superconductors. Those different states can be classified by the symmetries they spontaneously break— translational, rotational, and gauge symmetries, respectively, for the examples above. Before 1980 all states of matter in condensed-matter systems could be classified by the principle of broken symmetry. The quantum...

متن کامل

Topological Anderson insulator.

Disorder plays an important role in two dimensions, and is responsible for striking phenomena such as metal-insulator transition and the integral and fractional quantum Hall effects. In this Letter, we investigate the role of disorder in the context of the recently discovered topological insulator, which possesses a pair of helical edge states with opposing spins moving in opposite directions a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016